

MasterFiber®

MasterFiber®: Mit der perfekten Faser zum Ziel – kostensparend, dauerhaft und nachhaltig.

Nicht strukturelle Fasern

MasterFiber® 006 Brandschutz für Beton, empfohlen für Stützen,

empfohlen für Stützen, Tunnel-Innenschalen und spezielle Bauteile

 Als Brandschutzfaser einsetzbar mit einer empfohlenen Dosierung von 2 kg/m³.
 Bei einem Brand schmelzen die Mikrofasern und hinterlassen Mikrokanäle im Beton. Diese Kanäle ermöglichen die Freisetzung von Wasserdampfdruck und verhindern bzw. reduzieren damit die Abplatzungen deutlich.

Abminderung [%]

70

MasterFiber® 018

60

50

Rissfläche
Risslänge

40

20

10

0

MasterFiber® 018

Schwindrissbegrenzung für Beton und Mörtel, empfohlen für Industrieböden und Überzüge

- Das plastische Schwinden entsteht durch die verdunstungsbedingte Volumenveränderung des Frischbetons (Wasserverlust) nach dem Einbau, wenn das Gemisch noch plastisch ist und bislang noch keine Festigkeit erreicht hat. Wird dieses Schwinden behindert, kann es zur Rissbildung kommen.
- Das dreidimensionale
 MasterFiber®-Fasernetzwerk ist
 eine der effektivsten Methoden,
 um die Rissneigung beim plasti schen Schwinden zu reduzieren
 (siehe Diagramm).

Übersicht	MasterFiber® 006	MasterFiber® 018	MasterFiber [®] I5I SPA	MasterFiber [®] 235 SPA	MasterFiber [®] 245 SPA	MasterFiber® 400	MasterFiber [®] 401	MasterFiber® 040
Empfohlener Dosierbereich [kg/m³]	0.6-3.0	0.6-3.0	4-10	2.5-10.0	2.5-10.0	5-35	5-35	Beton: 0.5–5.0 UHFB: 15–45
Тур	Mikrofaser Klasse Ia	Mikrofaser Klasse la	Makrofaser Klasse II	Makrofaser Klasse II	Makrofaser Klasse II	Mikrofaser Klasse la	Mikrofaser Klasse la	Mikrofaser Klasse la
Polymer	PP	PP	PP	PP	PP	PVA	PVA	PVA
Dichte [kg/dm³]	0.91	0.91	0.91	0.91	0.91	1.30	1.30	1.30
Länge [mm]	6	18	50	30	48	18	12	ca. 8
Äquivalenter Durchmesser [µm]	34	34	850	700	700	200	200	ca. 40
Schlankheitsverhältnis [-]	176	529	59	43	69	90	60	ca. 200
E-Modul (Sekante) [GPa]	_	_	4.0	6.0	6.0	7.1	8.5	_
E-Modul (Young) [GPa]	-	-	≥ 4.7	≥8.0	≥ 8.0	≥ 27.0	≥ 27.0	ca. 41.0
Zugfestigkeit [MPa]	_	-	490	500	500	750	800	ca. 1600
Schmelzpunkt T _s [°C]	150-170	150-170	150-170	150-170	150-170	200-230	200-230	200-230
Einfluss auf die Konsistenz von Beton (Vébé ohne/mit)	0.6 kg/m³: 8s/8s	0.6 kg/m³: 8s/13s	4.0 kg/m³: 6s/8s	5.0 kg/m³: 9s/14s	4.0 kg/m³: 6s/6s	32.5 kg/m³: 3s/15s	32.5 kg/m³: 3s/17s	_
Dosierung um die gefordete residuelle Biegezugfestigkeit zu erreichen	-	_	4.0 kg/m³	5.0 kg/m³	4.0 kg/m³	32.5 kg/m³	32.5 kg/m³	_

Strukturelle Fasern

MasterFiber® ISI SPA

Für Trocken- und Nassspritzbeton

 Diese Fasern verbessern das Arbeitsvermögen und reduzieren den Rückprall bei Spritzbetonanwendungen. Eine Dosierung von 6 kg/m³ entspricht ca. 35 kg/m³ an Stahlfasern.

MasterFiber® 235 SPA

Armierungsersatz, empfohlen für Industrieböden und Bodenplatten

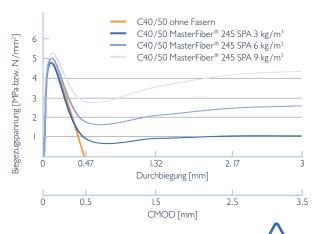
- Im frischen Betonzustand reduzieren diese Fasern die Rissbildung infolge von Trocknungsschwinden und Temperaturgradienten.
- Im Festbeton verbessern sie die Duktilität, erhöhen die Nachrissbiegezugfestigkeit und die Schlagzähigkeit von Beton.
- Alternative zu sekundärer Mattenbewehrung.

MasterFiber® 245 SPA

Armierungsersatz, empfohlen für Fertigteilelemente und UHPC

- Die Duktilität von Betonbauteilen wird durch die Verwendung dieser Fasern verbessert. Darüber hinaus werden auch die Nachrissbiegezugfestigkeit und die Schlagzähigkeit von Beton erhöht.
- Sie können die Stahlbewehrung vollständig oder teilweise ersetzen.

MasterFiber® 400, 401 & 040


Polymerfaserbewehrter HPC und UHPC, empfohlen für schlanke und hochwertige Fertigteile

- Im frischen Betonzustand reduzieren diese Fasern die Rissbildung infolge von Trocknungsschwinden und Temperaturgradienten.
- Im Festbeton verbessern sie die Duktilität, erhöhen die Nachrissbiegezugfestigkeit und die Schlagzähigkeit von feinkörnigen Betonen.
- Ermöglicht verformungserhärtende, zementgebundene Kompositbaustoffe bei Dosierungen ab ca. 20 kg/m³.

Ohne Armierung oder Fasern wird ein Beton unmittelbar nach Überschreiten der Biegezugfestigkeit reissen und durchbrechen bzw. versagen (orange Kurve im untenstehenden Diagramm).

Faserbeton ist ein Verbundwerkstoff aus Betonmatrix und Fasern. Die strukturellen Fasern wirken erst wenn der Beton gerissen ist. Mit den MasterFiber® Makrofasern werden die Spannungen verteilt bzw. die Zugkräfte zwischen den Rissufern übertragen (blaue Kurven im untenstehenden Diagramm) und die Duktilität des Betons wird signifikant erhöht.

SN EN 14651 - Residuelle Biegezugfestigkeit

Vorteile gegen Stahlarmierung/-fasern:

- Gute Chemikalienbeständigkeit (Säure- und Alkalibeständigkeit)
- Keine Rostfleckenbildung
- Einfachere Verarbeitung
- Geringer Verschleiss der Misch- und Förderanlagen

Ihr Direktkontakt

Julien Bizzozero
Innovation & Fiber Manager Schweiz

M +41 79 801 79 82 • julien.bizzozero@masterbuilders.com

Master Builders Solutions® für die Baubranche

MasterAir®

Lösungen für kontrollierte Luftporenbildung in Beton

MasterCast®

Lösungen für die Fertigteilund Betonwarenindustrie

MasterCem®

Lösungen für die Zementherstellung

MasterCO₂re[™]

Lösungen für klinkerarmen Beton

MasterEase®

Lösungen für niedrigviskosen Höchstleistungsbeton

MasterFinish®

Lösungen für die Schalungsbehandlung und hochwertige Betonoberflächen

MasterFiber[®]

Umfassende Lösungen für faserverstärkten Beton

MasterGlenium®

Lösungen für Hochleistungsbeton

MasterKure®

Lösungen für die Betonnachbehandlung

MasterLife®

Lösungen für hervorragende Dauerhaftigkeit

MasterMatrix®

Lösungen für die hochentwickelte Rheologiesteuerung von Beton

MasterPel®

Lösungen zur Hydrophobierung, Reduzierung von Ausblühungen und für den Oberflächenschutz

MasterPolyheed®

Lösungen für Standard-Beton

MasterPozzolith®

Lösungen für wasserreduzierten Beton

MasterRheobuild®

Lösungen für hochfesten Beton

MasterRoc®

Lösungen für den Untertagebau

MasterSet®

Lösungen für die Abbindesteuerung von Beton

MasterSphere®

Lösungen für garantierten Frost-Tausalz-Widerstand

MasterSuna®

Lösungen für Sand und Gestein in Beton

MasterSure®

Lösungen für aussergewöhnlichen Erhalt der Verarbeitbarkeit von Beton

Master X-Seed®

Innovative Erhärtungsbeschleuniger für Beton

Quantified Sustainable Benefits Advanced Chemistry by Master Builders Solutions®

Wir lassen die Zahlen sprechen: Wir möchten Ihnen einige unserer energieeffizientesten Produktlösungen für die Bauindustrie vorstellen. Erfahren Sie, wie Sie Geld, Zeit und Energie sparen können.

sustainability.master-builders-solutions.com

Master Builders Solutions Schweiz AG

Im Schachen, 5II3 Holderbank T +4I 58 958 22 44 info-as.ch@masterbuilders.com www.master-builders-solutions.ch

Die in diesem Dokument enthaltenen Daten basieren auf dem aktuellen Stand unseres Wissens und unserer Erfahrungen. Sie stellen aufgrund der zahlreichen Faktoren, die die Bearbeitung und Anwendung unserer Produkte beeinflussen können, nicht die vertraglich zugesicherte Produktqualität dar und befreien den Bearbeiter nicht von eigenständig auszuführenden Recherchen und Prüfungen. Die vereinbarte Produktqualität zum Zeitpunkt des Gefahrenübergangs wird einzig im aufgestellten Spezifikationsdatenblatt aufgeführt. Alle Beschreibungen, Zeichnungen, Fotos, Daten, Verhältnisse und Gewichte o. ä. können ohne vorherige Ankündigung geändert werden. Es obliegt der Verantwortung des Abnehmers unserer Produkte, sicherzustellen, dass alle Eigentumsrechte und gesetzlichen Bestimmungen befolgt werden (09/2023).

® eingetragene Marke von Master Builders Solutions® in vielen Ländern der Welt

