Technical Bulletin

Converting Concrete Test Cylinder Molds into Liquid Measuring Vessels

Introduction

The correct dosing of liquid admixtures during truck batching and testing requires the use of standard measuring devices such as a measuring cup, graduated cylinder, etc. For those instances where these are not available, the following guidelines can be used for converting concrete test cylinder molds into measuring devices for liquids.

It should be noted that these converted cylinder molds may not be as accurate as graduated cylinders, measuring cups or other devices. Accuracy for $4 \mathrm{in} . \times 8 \mathrm{in}$. ($100 \mathrm{~mm} \times 200 \mathrm{~mm}$) molds is likely to be $\pm 2 \mathrm{fl} \mathrm{oz}(60 \mathrm{~mL})$ and for $6 \mathrm{in} . \times 12 \mathrm{in}$. ($150 \mathrm{~mm} \times 300 \mathrm{~mm}$) molds $\pm 4 \mathrm{fl} \mathrm{oz}(120 \mathrm{~mL})$.

Equipment Needed (see Figure I)

- A clean plastic concrete test cylinder mold: $6 \mathrm{in} . \times 12 \mathrm{in}$.
($150 \mathrm{~mm} \times 300 \mathrm{~mm}$) or $4 \mathrm{in} . \times 8 \mathrm{in}$. ($100 \mathrm{~mm} \times 200 \mathrm{~mm}$)
- A minimum 12 in . $(300 \mathrm{~mm})$ ruler graduated in minimum 0.5 in . (or 10 mm) increments

Calculating the Quantity of Admixture Needed
Quantity of admixture needed $=$
$\frac{C M}{100} \times A D \times L S$
Where,
$\mathrm{CM}=$ Total cementitious materials content $\left(\mathrm{lb} / \mathrm{yd}^{3}\right.$ or $\left.\mathrm{kg} / \mathrm{m}^{3}\right)$
$\mathrm{AD}=$ Admixture dosage (fl oz/cwt or $\mathrm{mL} / \mathrm{I} 00 \mathrm{~kg}$)
$\mathrm{LS}=$ Load size $\left(\mathrm{yd}^{3}\right.$ or $\left.\mathrm{m}^{3}\right)$

Figure I.
Cylinder mold being used as a measuring device for liquids

Using a 6 in. x 12 in . ($150 \mathrm{~mm} \times 300 \mathrm{~mm}$) cylinder mold
A standard 6 in. $\times 12$ in. ($150 \mathrm{~mm} \times 300 \mathrm{~mm}$) cylinder can hold approximately $185 \mathrm{fl} \mathrm{oz}(5470 \mathrm{~mL})$ of liquid admixture.

Measuring in U.S. Customary Units:
| in. of filling height $=\mid 5.7 \mathrm{fl} \mathrm{oz} \mathrm{OR} \mathrm{\mid} \mathrm{fl} \mathrm{oz}=0.064 \mathrm{in}$. of filling height Example:
To measure 150 fl oz of admixture, filling height inside the mold is: $150 \times 0.064=9.5 \mathrm{in}$.

Measuring in Metric Units:
I mm of filling height $=18 \mathrm{~mL}$ OR $1 \mathrm{~mL}=0.05 \mathrm{~mm}$ of filling height Example:
To measure 2750 mL of admixture, filling height inside the mold is: $2750 \times 0.05=150 \mathrm{~mm}$

Using a 4 in. x 8 in. ($100 \mathrm{~mm} \times 200 \mathrm{~mm}$) cylinder mold
A standard $4 \mathrm{in} . \times 8 \mathrm{in}$. ($100 \mathrm{~mm} \times 200 \mathrm{~mm}$) cylinder can hold approximately $55 \mathrm{fl} \mathrm{oz}(1625 \mathrm{~mL})$ of liquid admixture.

Measuring in U.S. Customary Units:
I in. of filling height $=7 \mathrm{fl} \mathrm{oz}$ OR | $\mathrm{fl} \mathrm{oz}=0.14 \mathrm{in}$. of filling height Example:
To measure 45 fl oz of admixture, filling height inside the mold is: $45 \times 0.14=6.5 \mathrm{in}$.

Measuring in Metric Units:

I mm of filling height $=8 \mathrm{~mL}$ OR $\mid \mathrm{mL}=0.125 \mathrm{~mm}$ of filling height Example:
To measure 950 mL of admixture, filling height inside the mold is: $950 \times 0.125=120 \mathrm{~mm}$

Master Builders Solutions Admixtures US, LLC

23700 Chagrin Boulevard
Beachwood, OH 44 I22 USA
(800) 628-9990

Master Builders Solutions Canada, Inc

1800 Clark Boulevard
Brampton, Ontario L6T 4M7 CANADA
(289) 360-I300
master-builders-solutions.com/en-us
admixtures@masterbuilders.com

